Leonid Vitalievič Kantorovič citáty

Leonid Vitalievič Kantorovič bol ruský matematik a ekonóm, nositeľ Ceny Švédskej ríšskej banky za ekonomické vedy na pamiatku Alfreda Nobela za rok 1975.Pracoval v matematickej teórii optimalizácie, kde položil základy lineárneho programovania, niekoľko rokov pred tým, než George Dantzig objavil simplexovú metódu. Svoje poznatky v teórii optimalizácie využíval v oblasti hospodárskeho plánovania. V roku 1949 dostal za svoju prácu v tejto oblasti Stalinovu cenu.

Pracoval aj v iných oblastiach matematiky, predovšetkým vo funkcionálnej analýze a numerickej matematike, aplikoval funkcionálnu analýzu na analýzu niektorých iteratívnych metód numerickej matematiky, z čoho vzišla tzv. Kantorovičova nerovnosť. Je tiež autorom konceptu tzv. Kantorovičovej metriky, ktorá sa využíva v teórii pravdepodobnosti. Pracoval aj v komplexnej analýze, variačnom počte a deskriptívnej teórii množín. Wikipedia  

✵ 19. január 1912 – 7. apríl 1986
Leonid Vitalievič Kantorovič fotka
Leonid Vitalievič Kantorovič: 8   citátov 0   Páči sa

Leonid Vitalievič Kantorovič: Citáty v angličtine

“I discovered that a whole range of problems of the most diverse character relating to the scientific organization of production (questions of the optimum distribution of the work of machines and mechanisms, the minimization of scrap, the best utilization of raw materials and local materials, fuel, transportation, and so on) lead to the formulation of a single group of mathematical problems (extremal problems). These problems are not directly comparable to problems considered in mathematical analysis. It is more correct to say that they are formally similar, and even turn out to be formally very simple, but the process of solving them with which one is faced [i. e., by mathematical analysis] is practically completely unusable, since it requires the solution of tens of thousands or even millions of systems of equations for completion.
I have succeeded in finding a comparatively simple general method of solving this group of problems which is applicable to all the problems I have mentioned, and is sufficiently simple and effective for their solution to be made completely achievable under practical conditions.”

Kantorovich (1960) "Mathematical Methods of Organizing and Planning Production." Management Science, 6(4):366–422, 1960, p. 368); As cited in: Cockshott, W. Paul. " Mises, Kantorovich and economic computation http://www.dcs.gla.ac.uk/publications/PAPERS/8707/standalonearticle.pdf." (2007).

“The university immediately published my pamphlet, and it was sent to fifty People’s Commissariats. It was distributed only in the Soviet Union, since in the days just before the start of the World War it came out in an edition of one thousand copies in all.
Soviet Union, since in the days just before the start of the World War it came out in an edition of one thousand copies in all. The number of responses was not very large. There was quite an interesting reference from the People’s Commissariat of Transportation in which some optimization problems directed at decreasing the mileage of wagons was considered, and a good review of the pamphlet appeared in the journal "The Timber Industry."
At the beginning of 1940 I published a purely mathematical version of this work in Doklady Akad. Nauk [76], expressed in terms of functional analysis and algebra. However, I did not even put in it a reference to my published pamphlet—taking into account the circumstances I did not want my practical work to be used outside the country
In the spring of 1939 I gave some more reports—at the Polytechnic Institute and the House of Scientists, but several times met with the objection that the work used mathematical methods, and in the West the mathematical school in economics was an anti-Marxist school and mathematics in economics was a means for apologists of capitalism. This forced me when writing a pamphlet to avoid the term "economic" as much as possible and talk about the organization and planning of production; the role and meaning of the Lagrange multipliers had to be given somewhere in the outskirts of the second appendix and in the semi Aesopian language.”

L.V. Kantorovich (1996) Descriptive Theory of Sets and Functions. p. 41; As cited in: K. Aardal, ‎George L. Nemhauser, ‎R. Weismantel (2005) Handbooks in Operations Research and Management Science, p. 19-20

“Once some engineers from the veneer trust laboratory came to me for consultation with a quite skilful presentation of their problems. Different productivity is obtained for veneer-cutting machines for different types of materials; linked to this the output of production of this group of machines depended, it would seem, on the chance factor of which group of raw materials to which machine was assigned. How could this fact be used rationally?
This question interested me, but nevertheless appeared to be quite particular and elementary, so I did not begin to study it by giving up everything else. I put this question for discussion at a meeting of the mathematics department, where there were such great specialists as Gyunter, Smirnov himself, Kuz’min, and Tartakovskii. Everyone listened but no one proposed a solution; they had already turned to someone earlier in individual order, apparently to Kuz’min. However, this question nevertheless kept me in suspense. This was the year of my marriage, so I was also distracted by this. In the summer or after the vacation concrete, to some extent similar, economic, engineering, and managerial situations started to come into my head, that also required the solving of a maximization problem in the presence of a series of linear constraints.
In the simplest case of one or two variables such problems are easily solved—by going through all the possible extreme points and choosing the best. But, let us say in the veneer trust problem for five machines and eight types of materials such a search would already have required solving about a billion systems of linear equations and it was evident that this was not a realistic method. I constructed particular devices and was probably the first to report on this problem in 1938 at the October scientific session of the Herzen Institute, where in the main a number of problems were posed with some ideas for their solution.
The universality of this class of problems, in conjunction with their difficulty, made me study them seriously and bring in my mathematical knowledge, in particular, some ideas from functional analysis.
What became clear was both the solubility of these problems and the fact that they were widespread, so representatives of industry were invited to a discussion of my report at the university.”

L.V. Kantorovich (1996) Descriptive Theory of Sets and Functions. p. 39; As cited in: K. Aardal, ‎George L. Nemhauser, ‎R. Weismantel (2005) Handbooks in Operations Research and Management Science, p. 15-26